

Two Major Aims

- Establishing a mathematical function which describes the dependency of the system's parameter (e.g. concentration) on the measured value
- Gaining statistical information and characteristics of the analytical system, e.g. sensitivity, precision

Choosing the Preliminary Working Range

- Take into consideration
 - The practical application of the analysis (the purpose)
 - The possibilities that are technically feasible
 - Measurement results at the lower application limit must be significantly different from blanks
 - The requested analytical precision (or measurement uncertainty) has to be achieved over the whole working range
 - If a linear regression procedure has to be applied the variances have to be homogeneous over the whole range and linearity has to be assured

Basics of Calibration

Homogeneity Check for Variances

- Measure the lowest and the highest standard ten times
- Calculate variances for both data sets

$$s_i^2 = \frac{\sum (y_{ij} - \overline{y}_i)}{n_i - 1}$$

Check with F-test

$$F_{observed} = \frac{s_N^2}{s_1^2}$$

If F_{observed} > F_{critical}, variances are not homogeneous

- Possible consequences:
 - Reduced working range
 - Weighted regression

Outlier Test using the F-Test

- The residual standard deviations are checked for significant differences
- Calculate

$$F_{observed} = \frac{(N_{A1} - 2)s_{y_{A1}}^2 - (N_{A2} - 2)s_{y_{A2}}^2}{s_{y_{A2}}^2}$$

- And compare with the critical value from a statistical table for f₁=1, f₂=N_{A2}-2, P=95%
- If F_{observed} < F_{critical}, no outlier is identified

Calibration Strategies in Routine Analysis

- The basic calibration as described up to here is part of the (re-)validation of an analytical method
- For routine use calibration strategies with less effort are used
- The effort made depends on the demands of the customer and the stability of the method

Calibration Strategies in Routine Analysis

- Number of calibration points in routine
 - Where the calibration of the method is very stable a one-point calibration to verify a previous multipoint calibration may be sufficient
 - In other, less stable circumstances a 3- or 5-point calibration may be needed
- Frequency of calibration
 - Also depends on the stability of calibration
 - Some analytical methods need a daily calibration whereas other calibrations may last for months. At least check of the calibration is adviceable in any case

Internal Standard

- Advisable for methods including a complex sample preparation procedure like extraction and clean-up
- Addition of a known amount of a substance different from the analyte and not present in the sample, but chemically behaving in the same way as the analyte
- Correction of the measurement result for the analyte with the recovery rate of the internal standard
- In mass spectrometry isotope marked analytes are often used for this purpose

Specification of Measurement Process

- LoD and LoQ cannot be specified in the absence of a fully defined measurement process including interferences and type of sample matrix
- "Interference free detection limits" and "Instrument detection limits", for example, do not specify the measurement capabilities of a complex measurement process including sample preparation

(IUPAC Orange Book)

32

Requirements

- Analytical results that are corrected for blank and background
- Linear relation between concentration x and signal y
- Homogeneity of variances
- Possibility to homogeneously divide samples into sub-samples
- Analyte can precisely be added to the sample

